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Introduction

 Fund managers Iin financial institutions often
employ
- Technical analysis
- Statistical (time series) models
- Regression models

— Various types of decision models
(endogenous variable is binary or categorical)

for investment decision purposes.



Introduction

 Hedge fund managers

- Are free to choose their Investment Strategy (I1S)
- Disclose only little or no information about their IS

* “Ordinary” fund managers

— Are restricted in their IS

- But don't like to provide full details about their
predictions and decisions

* |n both cases there Is no full disclosure about
the statistical decision making process



Example: market neutral IS

 Hedge funds often use a market neutral |S:

- Define a Universe of tradable items (stocks)
- Define a investment horizon (2 — 30 days)

- Create a discrimination model that makes 3 piles:
* Neutral pile (no position)
* Long pile (buy stocks = long position)
» Short pile (sell stocks = short position)

- Hold short and long positions simultaneously during
horizon period



Example: conclusion

 The hedge fund managers are unable to
adequately demonstrate the qualities of their
Investment approach and the clients have no
iInformation about the risk they are actually
taking by using the hedge fund investment

vehicle.
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Rating Procedure

« Rating Is a function of the Expert's ability to
discriminate between Real and Random-Walk

time series

This equally applies to Experts using:

- Technical analysis
- Statistical models
- No model or technique at all :-)



Fundamental Problem

* This procedure does not take into account
exogenous factors such as:

- Temporal properties of the market (volatility, ...)
— Geographical properties of the market

- |1S-related restrictions imposed by senior
management or by law

* Therefore the rating can only be used for a
single case (we cannot compare Experts)



Solution

« Statistical model that discriminates well
(low alpha and beta errors)

* The discrimination quality of the model is used
as a benchmark to create a relative rating

* This Is possible If the model's performance Is
not too sensitive to external factors (time, place,

)



Model

* Quasi Random-Walk (Airoldi, 2001)

 P. Cizeau, M. Potters, J.P. Bouchaud, Correlation Structure of
Extreme Stock Returns, Quantitative Finance, 1, 217-222 (2001)

« Marco Airoldi, Correlation Structure and Fat Tails in Finance: a New
Mechanism, Risk Management & Research, Intesa-Bci Bank, Milan,
Italy (July 30, 2001)

Airoldi [1] formulates his model for N equities 5;
for i = 1.2,....,N that exhibit movements d5; = =£s
following a Quasi Random-Walk with "hopping prob-
abilities” Fjg, that may depend on previous market
returns. He continues to define the state_sl]nf the market:
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with M(=40 = LSV e g (M)] < 1.

Obviously, F;s. depends on the previous market
movements if 4 = 1. On the other hand, if h = 0 then
P55, behaves like an ordinary Random-Walk and does not
depend on market movements.



Simple Logistic Regression

* | expand on this idea and introduce the logistic
relationship
f = exp(gamma + delta X)
where P(h=1) =f/ (1+f)
and where X is a “discriminating statistic”

» Estimation: Bias Reduced Logistic Regression:

> Firth, D. (1993) Bias reduction of maximum likelihood estimates.
Biometrika 80, 27-38.

> Firth, D. (1992) Bias reduction, the Jeffreys prior and GLIM. In Advances
in GLIM and Statistical Modelling, Eds. L Fahrmeir, B J Francis, R Gilchrist
and G Tutz, pp91-100. New York: Springer.

- Heinze, G. and Schemper, M. (2002) A solution to the problem of
separation in logistic regression. Statistics in Medicine 21, 2409-2419.



Best discriminating factor?

 Based on preliminary investigation we identified
the p-value of the small sample Kurtosis

In this study we employ the following
(sample) measure of Kkurtosis for the equ:ties;
{xy, 20, .. } with = 2, ....N;

- { (n—1 E : ri — T 3(n—2)°
K. = : R .J..- (n—2)*
: in—2){n—3)(n—4) n—23)(n—4)
j=2

It
. -2
with s = \J ﬁ (rj =7i) and r; = 7 Ilnx; and

j=2
The kurtosis measure K; can be used for large and
small samples. The standard error of K, is sp =

[ "2 .

'—l[fn—]}'—ljn-_-‘f . 0 Gin—1)n )

/ 5w 2 J )7 Fatic.
\J. T with s7 CESTEDR ['he test statis

ticis 2 = £+ — N (0,1) [6].

as the best factor (Vandervorst, Wessa, 2005).



Dataset

66 Important index series including:

- U.S. stock exchanges

- U.S. Bonds, notes, treasury bills

- gold, silver

- Well-known stock exchanges in Europe and Asia

Dally closing prices
1995 — 2006
For every time series | simulate 20 R-W



Dataset

e 20 RWs were simulated for each real time
series (QRW): # Series = 66 + 20*66 = 1386



Subseries

» Seqguential Subseries were computed:

- Min. length = 100 obs.
- Max. length = 500 obs.

* Length of subseries Is increased by 1
observation in each iteration

* For each subseries the small sample Kurtosis
p-value was computed



Logistic Regressions

* For each length (= 100 to 500 with step 1)
the logistic regression was computed:

- Endogenous variable Is binary
- Exogenous variable is p-value of Kurtosis

- f = exp(gamma + delta X)
where P(h=1) = f / (1+f)
* All regressions have highly significant estimated

delta parameters (T-Stats between -15.9 and
-27.5)



alphas and betas

* Beta was computed for every regression, given
a fixed alpha = 5%
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Figure 2. Type II errors depend on the time series length
given a fixed type I error of 5%
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Figure 3. Type II error of kurtosis-based discrimination Figure 5. Type II error of kurtosis-based discrimination
model in relationship with type I error (time series length = model in relationship with type I error (time series length =

100) 500)



Linear Fit of Original Data
Rasidual 50 = 31.96390095980418
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Figure 6. Relationship between required length and desired
Type II error (criterion: Kurtosis p-value)

Linear Fit of Original Data
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Figure 8. Relationship between required length and desired
Type II error (criterion: Autocorrelation)

ally used in empirical research. For example, one might
consider an autocorrelation-based discriminating statistic
based on X;;, = >}, |p(Vina,, Vinz, ;)| for t =
jlg—1)+1,5(¢g—1)+2,...,5(¢q—1)+4,i=1,2,..., N,
J = PminsNmin + 1, oo, Rimag. and g = 1,2, ..., My;. This
discriminating statistic yields a power between 8.8% (for
j = 100) and 22.73% (for j = 500) when used in the lo-
gistic regression instead of the kurtosis p-value. The power



Conclusions

“Do real stock market time series exhibit fundamental,
testable differences when compared to the Random-
Walk?”

-> Yes (Kurtosis p-value works great)

Bias-Reduced Logistic Regression = non-linear
transformation of probabilities

We can use the model as a benchmark
=> |t looks like we can make “fair” comparisons:

- It only requires re-estimation of the model parameters

- the model's performance promises to be good over time
and place (and other factors?)

The autocorrelation-based measure requires 4 times more
observations to reach the same discrimination quality




Future work

* International comparison of Investment Experts

* Three categories instead of two:
(-1 =short ; O = neutral ; +1 = lonQ)

* Multiple categories:
(Strong Sell, Sell, Hold, Buy, Strong Buy)

* Feel free to join...



